Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38676522

RESUMO

BACKGROUND: Diabetic wound represents a serious issue with a substantial impact and an exceptionally complex pathology affecting patients' mental health and quality of life. So, we have developed a novel 3D organo-hydrogel nanocomposite of polydopamine/TiO2 nanoparticles and cu (PDA-TiO2@Cu) and examined its efficacy in diabetic wound healing. METHODS: Forty-five adult male albino rats were divided into normal control rats (non-diabetic rats with non-treated skin wounds), diabetic control rats (diabetic rats with non-treated skin wounds), and organo-hydrogel-treated rats (diabetic wounds treated with topically applied organo- hydrogel once daily). Macroscopic changes of the wound were observed on days 0, 3, 5, 7, and 10 to measure wound diameters. Skin specimens from the wound tissue were taken on days 3, 7, and 10, respectively, and examined histologically and immunohistochemically. Also, the gene expressions of collagen I, Matrix Metalloproteinase-9 (MMP-9), and Epidermal Growth Factor (EGF), and levels of Interleukin 6 (IL-6) and Superoxide Dismutase (SOD) were assessed. RESULTS: Our observed results indicated that the developed patch significantly accelerated the healing time compared to the normal control and diabetic control groups. Moreover, the patchloaded group revealed complete re-epithelization and a highly significant increase in the mean area % of CD31 immunostaining on day 7. The organo-hydrogel-loaded group displayed a significant decrease in gene expression of MMP-9 and a significant increase in gene expression of EGF and collagen I. Additionally, the organo-hydrogel-loaded group exhibited a significant decrease in levels of IL-6 and a significant increase in levels of SOD, compared to the normal diabetic control groups. CONCLUSION: The organo-hydrogel can be used for treating and decreasing the healing period of diabetic wounds.

2.
Adv Med Sci ; 69(1): 70-80, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387407

RESUMO

PURPOSE: Metformin (MET), a first-line treatment for type 2 diabetes mellitus, restores ovarian function in women with polycystic ovary syndrome. MET has been shown to increase the rate of success for in vitro fertilization when utilized in assisted reproductive technologies. This study was designed to examine the impact of MET on ovarian function and fertility in a mouse model of galactose-induced premature ovarian insufficiency (POI). We further investigated the underlying mechanisms. MATERIALS AND METHODS: Female mice were divided into 4 groups: saline, d-galactose, d-galactose â€‹+ â€‹MET, and MET. Body weight, ovarian index, and fertility were assessed. The hormonal profile was done. Advanced glycation end products (AGEPs), receptor for advanced glycation end products (RAGE), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), forkhead box O3a (FOXO3a) expression were measured. Ovarian follicle counting and morphology were analyzed. Immunohistochemistry of cleaved caspase-3 expression was performed. RESULTS: Our findings demonstrated that MET reversed irregularities in the estrus cycle, enhanced the ovarian index, and improved the abnormal levels of hormones and AGEs induced by d-galactose. Furthermore, the expression levels of PI3K, Akt, FOXO3a, and RAGE were upregulated with d-galactose. However, MET attenuated their expression levels. The primordial follicles ratio was improved, whereas atretic follicles and apoptotic-related cleaved caspase-3 expression were decreased in the d-galactose â€‹+ â€‹MET group compared to the d-galactose group. CONCLUSION: This study demonstrates that MET partially rescued ovarian dysfunction and apoptosis induced by d-galactose via a mechanism involving PI3K-Akt-FOXO3a pathway. Our finding proposed that MET may be a promising alternative treatment for POI.


Assuntos
Proteína Forkhead Box O3 , Galactose , Metformina , Fosfatidilinositol 3-Quinases , Insuficiência Ovariana Primária , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Feminino , Animais , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/patologia , Proteína Forkhead Box O3/metabolismo , Camundongos , Metformina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38299273

RESUMO

INTRODUCTION: Bisphenol A (BPA) is a chemical compound that has been used in many industries, such as paints and dental sealants. Taurine is a semi-essential amino acid with antioxidant, anti-inflammatory, and anti-apoptotic actions. AIM: This study aimed to evaluate the possible protective effect of taurine on BPA-induced structural changes in the cerebral cortex of rats using histological and immunohistochemical methods. MATERIALS AND METHODS: 35 Wistar rats (180-200 gm) were divided into control: 10 rats; Group I: 5 rats received corn oil (0.5 mL/day); Group II (Bisphenol low dose; BPAL): 5 rats received a low dose of BPA (25 mg/kg/three times/week); Group III (Bisphenol high dose; BPAH): 5 rats received a high dose of BPA (100 mg/kg/ three times/week; Group IV: (BPAL + taurine): 5 rats received taurine 100 mg/kg/day and BPAL (25 mg/kg/three times/week); Group V: (BPAH + taurine): 5 rats received taurine 100mg/kg/day and BPH (100 mg/kg/ three times/week). RESULTS: BPAL& BPAH groups showed significant dose-dependent histological changes of the neuropil, pyramidal, and neuroglial cells at H&E stained sections, significantly increased GFAP, caspase-3 immunohistochemical reaction with cells positive for Ki67 with many mitotic figures. BPAL + taurine and BPAH + taurine groups showed amelioration of the previously mentioned results. CONCLUSION: Taurine ameliorated the structural changes induced by BPA in the cerebral cortex of rats.

4.
Toxics ; 11(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112608

RESUMO

Concerns regarding the possible hazards to human health have been raised by the growing usage of silica nanoparticles (SiNPs) in a variety of applications, including industrial, agricultural, and medical applications. This in vivo subchronic study was conducted to assess the following: (1) the toxicity of orally administered SiNPs on the liver, kidneys, and adrenal glands; (2) the relationship between SiNPs exposure and oxidative stress; and (3) the role of magnesium in mitigating these toxic effects. A total of 24 Sprague Dawley male adult rats were divided equally into four groups, as follows: control group, magnesium (Mg) group (50 mg/kg/d), SiNPs group (100 mg/kg/d), and SiNPs+ Mg group. Rats were treated with SiNPs by oral gavage for 90 days. The liver transaminases, serum creatinine, and cortisol levels were evaluated. The tissue malondialdehyde (MDA) and reduced glutathione (GSH) levels were measured. Additionally, the weight of the organs and the histopathological changes were examined. Our results demonstrated that SiNPs exposure caused increased weight in the kidneys and adrenal glands. Exposure to SiNPs was also associated with significant alterations in liver transaminases, serum creatinine, cortisol, MDA, and GSH. Additionally, histopathological changes were significantly reported in the liver, kidneys, and adrenal glands of SiNPs-treated rats. Notably, when we compared the control group with the treated groups with SiNPs and Mg, the results revealed that magnesium could mitigate SiNPs-induced biochemical and histopathologic changes, confirming its effective role as an antioxidant that reduced the accumulation of SiNPs in tissues, and that it returns the levels of liver transaminases, serum creatinine, cortisol, MDA, and GSH to almost normal values.

5.
Food Chem Toxicol ; 171: 113537, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442736

RESUMO

Repeated acrylamide (ACR) exposure in experimental animals and humans causes variable degrees of neuronal damage. Because of its unique features, several green synthesized nanomaterials are explored for neuromodulatory activity. Hence, this study investigated the effect of green synthesized zinc oxide nanoparticles using Moriga olifera leaves extract (MO-ZnONP) against acrylamide (ACR)-induced neurobehavioral and neurotoxic impacts in rat. Forty male Sprague Dawley rats were distributed into four groups orally given distilled water, MO-ZnONP (10 mg/kg b.wt), ACR (20 mg/kg b.wt), or MO-ZnONP + ACR for 60 days. Gait quality and muscular, motor, and sensory function were assessed. Acetylcholinesterase (AChE), dopamine, catalase, malondialdehyde (MDA), and Zn brain contents were determined. Brain histopathology and immunohistochemical localization of the amyloid-ß protein and abnormal Tau were performed. The results revealed that MO-ZnONP significantly reduced ACR-induced sensory dysfunctions, hind limb abnormality, and motor deficits. Additionally, the ACR-induced increase in dopamine and AChE were significantly supressed by MO-ZnONP. Besides, MO-ZnONP significantly restored catalase and Zn content but reduced increased MDA brain content resulting from ACR. Furthermore, the ACR-induced neurodegenerative changes and increased amyloid-ß and phosphorylated Tau immunoexpression was significantly abolished by MO-ZnONP. Conclusively, MO-ZnONP could be used as a biologically effective compound for mitigating ACR's neurotoxic and neurobehavioral effects.


Assuntos
Nanopartículas , Síndromes Neurotóxicas , Óxido de Zinco , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Estresse Oxidativo , Catalase/metabolismo , Óxido de Zinco/farmacologia , Acrilamida/toxicidade , Acetilcolinesterase/metabolismo , Dopamina , Síndromes Neurotóxicas/etiologia
6.
Free Radic Biol Med ; 182: 150-159, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35218913

RESUMO

Chronic kidney disease (CKD) is an important global disease its rates are increasing worldwide. CKD is caused by injuries to kidney tissue that exceeds the rate of regeneration, which with time lead to irreversible renal damage and CKD become evident. In females, diminished estrogen supply in the postmenopausal period is associated with greater risk for developing CKD. In this study we isolated exosomes from bone marrow mesenchymal stem/stromal cells (BM-MSCs) and tested their therapeutic effects on post-menopause CKD (PM-CKD) and compared their effects with BM-MSCs. The menopause model was achieved by bilateral ovariectomy in 8-months-old female albino rats, then no treatment, 2 million BM-MSCs or 100 µg of exosomes (Exo) was given intravenously in tail vein to ovariectomized rats and the study continued for 8 weeks post-ovariectomy. Changes in weight, urine volume, urine protein content, kidney function biochemical parameters (creatinine and BUN), Kidney oxidative stress (MDA), kidney antioxidant parameters (SOD, GPx and CAT), histopathological changes, immunohistochemical expression of KIM-1 and, finally, genes related to renal damage (peroxiredoxin-3, KIM-1 and ICAM-1) and inflammation (TNF-α, Cox2 and IL-6) were recorded for all study groups. Post-ovariectomy there was an increased body weight, drastic reduction of estrogen and progesterone levels, reduced urine output, increased urinary protein excretion, elevated serum creatinine and BUN, increased MDA and reduced GPx SOD, and CAT in kidney tissue, chronic inflammation, degenerative and fibrotic lesions in histopathological examination, high expression of KIM-1 immunohistochemically and changes in gene expression analyses all pointing to the development of CKD in the study rats. In the PM-CKD groups receiving BM-MSCs or Exo, the whole chronic inflammatory picture was completely reversed towards a much normal kidney structure and function. The improvements were more observable with Exo compared to BM-MSCs. Overall, our results show for the first time that exosomes isolated from BM-MSCs are more potent in reducing chronic inflammatory changes in the kidney of postmenopausal females compared to the cell-based approach using BM-MSCs. Therefore, MSCs-derived exosomes are a promising therapeutic approach for preserving postmenopausal kidney structure and function and, subsequently, should improve the quality of life of postmenopausal females.


Assuntos
Exossomos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Exossomos/metabolismo , Feminino , Inflamação/metabolismo , Rim/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Pós-Menopausa , Qualidade de Vida , Ratos
7.
Toxicology ; 452: 152722, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33592256

RESUMO

Aroclor 1254 is a mixture of polychlorinated biphenyls that are reported to disrupt thyroid hormone homeostasis, yet little is known on its effect on thyroid gland microarchitecture. Lycopene is a commonly used potent antioxidant. This study is a biochemical, histological, and immunohistochemical assessment of the effect of Aroclor 1254 on the morphology, proliferation, and angiogenesis of the thyroid gland in rat and to evaluate the possible ameliorating role of lycopene. Twenty-four adult male albino rats were divided into 4 groups; Control, lycopene-treated (4 mg/kg/day orally for 30 days), Aroclor 1254-treated (2 mg/kg/day intraperitoneally for 30 days), and lycopene & Aroclor 1254-treated group. Serum thyroid hormones, thyroid-stimulating hormone (TSH), and tissue malondialdehyde (MDA) were quantified. Thyroid specimens were processed for histological staining with hematoxylin and eosin, periodic acid-Schiff, and Mallory's trichrome stains as well as immunohistochemical staining for detection of calcitonin, Ki67, and VEGF. In this study, Aroclor 1254-treated animals recorded a significant decline in both serum T3 and T4 coupled with a significant elevation in both TSH and tissue MDA. Histological sections showed small irregular follicles with the formation of hyperplastic and micro follicles. Some follicular and parafollicular cells depicted nuclear and cytoplasmic alterations associating with scanty or absent colloid in addition to signs of inflammation and fibrosis. A significant upregulation in the immunohistochemical expression of calcitonin, Ki67, and VEGF was recorded. Lycopene co-treatment successfully reinstated the values of most studied parameters and retrieved a near-control thyroid morphology. In conclusion, Aroclor 1254 impacted the thyroid hormone homeostasis, morphology, proliferation, and angiogenesis of the thyroid gland in rat, while lycopene efficiently ameliorated these adverse effects.


Assuntos
Antioxidantes/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Licopeno/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Glândula Tireoide/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Proliferação de Células/fisiologia , Licopeno/farmacologia , Masculino , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Ratos , Ratos Wistar , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Hormônios Tireóideos/metabolismo
8.
Can J Physiol Pharmacol ; 95(6): 714-720, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28187265

RESUMO

Corticosteroids are used to treat a variety of diseases like bronchial asthma. However, long-term corticosteroids have a gastric ulcerogenic potential. Montelukast (MTK) and Nigella sativa oil (NSO) are used in treatment of bronchial asthma. Previous studies showed that MTK and NSO had gastroprotective effects in other models of gastric ulcer. The present study assesses synergistic gastroprotective effects of both drugs in dexamethasone (DXM)-induced gastric damage. Fifty male rats were divided into 5 groups: normal control (I), DXM group (II), MTK + DXM group (III), NSO + DXM group (IV), MTK + NSO + DXM group (V). After 7 days, stomachs were removed for biochemical analysis and histological examinations. Significant increases in malondialdehyde (MDA) level, superoxide dismutase (SOD) activity, myeloperoxidase (MPO) activity, and proliferating cell nuclear antigen (PCNA) positive cells, with significant decreases in mucus secretion were detected in DXM-treated group compared with group I. Meanwhile, significant decreases of MDA level, MPO activity, and PCNA positive cells and significant increases in mucus secretion were detected in treated groups compared with group II. SOD activity significantly decreased in group V compared with group II. We could conclude that administration of either MTK or NSO or both with DXM counteracts DXM-induced gastric lesions.


Assuntos
Acetatos/farmacologia , Corticosteroides/efeitos adversos , Citoproteção/efeitos dos fármacos , Nigella sativa/química , Óleos de Plantas/farmacologia , Quinolinas/farmacologia , Estômago/citologia , Estômago/efeitos dos fármacos , Animais , Antiasmáticos/farmacologia , Ciclopropanos , Dexametasona/efeitos adversos , Interações Medicamentosas , Mucosa Gástrica/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Ratos , Ratos Wistar , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...